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Abstract
The analytic continuation of the Lippmann–Schwinger bras and kets is obtained
and characterized. It is shown that the natural mathematical setting for the
analytic continuation of the solutions of the Lippmann–Schwinger equation is
the rigged Hilbert space rather than just the Hilbert space. It is also argued
that this analytic continuation entails the imposition of a time asymmetric
boundary condition upon the group time evolution, resulting in a semigroup
time evolution. Physically, the semigroup time evolution is simply a (retarded
or advanced) propagator.

PACS numbers: 03.65.−w, 02.30.Hq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper is devoted to construct and characterize the analytic continuation of the Lippmann–
Schwinger bras and kets, as well as the analytic continuation of the ‘in’ and ‘out’
wavefunctions. This paper follows up on [1], where we obtained and characterized the
solutions of the Lippmann–Schwinger equation associated with the energies of the physical
spectrum. We showed in [1] that such solutions are accommodated by the rigged Hilbert
space rather than by the Hilbert space alone. In this paper, we shall show that the analytic
continuation of the Lippmann–Schwinger bras and kets is also accommodated by the rigged
Hilbert space rather than by the Hilbert space alone.

It was shown in [1] that the Lippmann–Schwinger bras and kets are distributions that
act on a space of test functions Φ ≡ S(R+-{a, b}). The space Φ arises from invariance
under the action of the Hamiltonian and from the need to tame purely imaginary exponentials.
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These two requirements force the functions of Φ to have a polynomial falloff at infinity. The
resulting Φ is a space of test functions of the Schwartz type. In this paper, it is shown that
the analytic continuation of the Lippmann–Schwinger bras and kets are distributions that act
on a space of test functions Φexp. The space Φexp arises from invariance under the action of
the Hamiltonian and from the need to tame real exponentials. These two requirements force
the elements of Φexp to fall off at infinity faster than real exponentials. More precisely, we
shall ask the elements of Φexp to fall off faster than Gaussians. The resulting Φexp is therefore
of the ultra-distribution type. We recall that an ultra-distribution is an infinitely differentiable
test function that falls off at infinity faster than exponentials.

In [1], we obtained the time evolution of wavefunctions and of the Lippmann–Schwinger
bras and kets associated with real energies and we saw that it is given by the standard quantum
mechanical group time evolution. In this paper, we shall see that analytically continuing the
time evolution of the wavefunctions results into a semigroup. We shall argue, although not
fully prove, that analytically continuing the time evolution of Lippmann–Schwinger bras and
kets also results into a semigroup.

As in [1], we restrict ourselves to the spherical shell potential

V (x) ≡ V (r) =


0 0 < r < a

V0 a < r < b

0, b < r < ∞
(1.1)

for zero angular momentum. Nevertheless, our results are valid for a larger class of potentials
that include, in particular, potentials of finite range. The reason why our results are valid for
such a large class of potentials is that, ultimately, such results depend on whether one can
analytically continue the Jost and scattering functions into the whole complex plane. Since
such continuation is possible for potentials that fall off at infinity faster than any exponential
[2], our results remain valid for a whole lot of interesting potentials.

In this paper, there will be a change in notation with respect to [1]. In [1], we used the
symbol ψ− to denote the ‘out’ states and ϕin, ψout to denote the asymptotically free ‘in’ and
‘out’ states. In the present paper, for the sake of brevity, we shall use the symbol ϕ− to denote
the ‘out’ wavefunctions ψ− and ϕ to denote any asymptotically free wavefunction such as ϕin

or ψout.
Throughout the paper, we shall always use radial analytic continuation, because the

transformation z → √
z converts a radial path of integration into another radial path, while it

distorts horizontal paths of integration.
Since the physical spectrum of the spherical shell potential is [0,∞), one may wonder if

performing analytic continuations is somehow inconsistent. To qualm any doubts, we recall
that the S-matrix, which is defined and unitary on the physical spectrum, is routinely continued
into the complex plane. Much the same way, one can continue the wavefunctions and the
Lippmann–Schwinger bras and kets into complex energies.

An important point is what happens with the self-adjointness of the Hamiltonian on the
space of test functions Φexp (and also on Φ). These spaces satisfy

Φexp ⊂ Φ ⊂ D(H), (1.2)

where D(H) is the domain on which the Hamiltonian is self-adjoint [1]. Thus, on Φ and Φexp,
the Hamiltonian is not a self-adjoint operator but just the restriction of a self-adjoint one.

As shall be shown, the analytically continued Lippmann–Schwinger bras and kets are
eigenvectors of the Hamiltonian with complex eigenvalues, and one may naturally wonder
whether such complex eigenvalues are in conflict with the self-adjointness of the Hamiltonian,
which in principle forbids any complex eigenvalues. To see how self-adjoint operators can
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have complex eigenvalues, let us consider the 1D momentum operator P = −ih̄ d/dx. The
eigenfunctions of P are eipx/h̄ with eigenvalue p. The eigenvalue p can in principle be
any complex number, although of course the physical spectrum of P is the real line and
in the completeness relation there only appear real p. Similarly, the eigenvalue equation
for the spherical shell Hamiltonian is valid for any complex number (if additional boundary
conditions are not imposed). Needless to say, the eigenfunctions of the Hamiltonian with
complex eigenvalues are not in the Hilbert space—they are distributions—and thus there
arises no conflict with the self-adjointness of the Hamiltonian.

Analytic continuations of the Lippmann–Schwinger equation have also been performed
in [3–9] by assuming that, in the energy representation, the Lippmann–Schwinger bras and
kets act on two different spaces of Hardy functions. Contrary to [3–9], we shall not make any
a priori assumption. Rather, we shall simply obtain the analytic continuation and study its
properties. As it turns out, the analytically continued Lippmann–Schwinger bras and kets do
not act on spaces of Hardy functions. Therefore, our results differ drastically from those of
[3–9].

The rigged Hilbert space we shall use is very similar to, although not the same as the
rigged Hilbert space used by Bollini et al to describe the resonance (Gamow) states [10, 11].
There are two major differences. First, Bollini et al use a space of test functions that fall off
at infinity faster than exponentials, whereas we shall use test functions that fall off faster than
Gaussians. The advantage of using Gaussian falloff is that, as will be discussed elsewhere,
one can obtain meaningful resonance expansions. Second, Bollini et al obtain many results by
using the momentum representation and the Fourier transform, whereas the present paper deals
with the wave-number representation and the Fourier-like transforms F± of section 2. The
advantage of the wave-number representation is that in such representation, the Hamiltonian
acts as a multiplication operator, whereas in the momentum representation, the Hamiltonian
acts as a complicated integral operator. The simplicity of the wave-number representation will
allow us to go beyond the results of [10, 11].

The ultimate goal we want to achieve by analytically continuing the solutions of the
Lippmann–Schwinger equation is to obtain the resonance states. Although this point will be
treated elsewhere, we want to present a brief preview of the results. The resonance states are
usually obtained by solving the Schrödigner equation subject to purely outgoing boundary
conditions, but they can also be obtained by analytically continuing the Lippmann–Schwinger
bras and kets into the resonance energies. The results of this paper will enable us to do just
so and to obtain some novel properties of the Gamow states. The resulting Gamow states will
turn out to be different from the so-called Gamow vectors of [4].

The structure of the paper is as follows. In section 2, we rewrite the results of [1] in terms
of the wave number, because the analytic continuation is more easily done in terms of the
wave number than in terms of the energy.

In section 3, we analytically continue the Lippmann–Schwinger and the ‘free’
eigenfunctions. As well, we characterize the analytic and the growth properties of such
continued eigenfunctions.

In section 4, we make use of the eigenfunctions of section 3 to analytically continue the
Lippmann–Schwinger and the ‘free’ bras and kets.

In section 5, we construct the rigged Hilbert spaces that accommodate the analytically
continued bras and kets of section 4, and we use these rigged Hilbert spaces to show that the
analytically continued bras and kets are eigenvectors of the Hamiltonian.

In section 6, we construct and characterize the wave-number representation of the rigged
Hilbert spaces, bras, kets and wavefunctions. In particular, we characterize the analytic
and growth properties of the analytically continued wavefunctions in the wave-number
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representation. By means of Gelfand’s and Shilov’s M and � functions [12], we shall see how
the exponential falloff of the elements of Φexp in the position representation limits the growth
of those elements in the wave-number representation.

In section 7, we construct the time evolution of the analytically continued wavefunctions,
bras and kets. By using the results of section 6, we shall see that the analytic continuation
of the group time evolution of the wavefunctions entails the imposition of a time asymmetry
that converts the group time evolution into a semigroup. Such semigroup is just a (retarded or
advanced) propagator. We shall also argue, although not fully prove, that the time evolution
of the analytically continued Lippmann–Schwinger bras and kets is also given by semigroups.

In section 8, we discuss the relation between time asymmetry and the ±iε of the
Lippmann–Schwinger equation. Finally, in section 9, we state our conclusions.

All through this paper, C will denote positive constants, not necessarily the same at each
appearance.

2. The wave-number representation

The eigenfunctions of the time-independent Schrödinger equation depend explicitly not on
the energy E but on the wave number k [1],

k =
√

2m

h̄2 E. (2.1)

In particular, the Lippmann–Schwinger eigenfunctions and the eigenfunction expansions
depend explicitly on k rather than on E. It is therefore convenient to rewrite their expressions
in terms of k before performing analytic continuations.

2.1. The Lippmann–Schwinger eigenfunctions in terms of the (positive) wave number

We start by writing the regular solution in terms of k:

χ(r; k) = χ(r;E) =


sin(kr) 0 < r < a

J1(k) eiκr + J2(k) e−iκr a < r < b

J3(k) eikr + J4(k) e−ikr b < r < ∞,

(2.2)

where

κ =
√

2m

h̄2 (E − V0) =
√

k2 − 2m

h̄2 V0. (2.3)

In terms of k, the Lippmann–Schwinger eigenfunctions read as

χ±(r;E) =
√

1

π

2m/h̄2

k

χ(r; k)

J±(k)
. (2.4)

The eigenfunctions χ±(r;E) are δ-normalized as functions of E:∫ ∞

0
dr χ±(r;E)χ±(r;E′) = δ(E − E′). (2.5)

The Lippmann–Schwinger eigenfunctions that are δ-normalized as functions of k are given by

χ±(r; k) :=
√

h̄2

2m
2kχ±(r;E) =

√
2

π

χ(r; k)

J±(k)
. (2.6)

Indeed, it is easy to check that∫ ∞

0
dr χ±(r; k)χ±(r; k′) = δ(k − k′). (2.7)
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2.2. The ‘in’ and ‘out’ bras, kets and wavefunctions in terms of the (positive) wave number

Once we have expressed the Lippmann–Schwinger eigenfunctions as δ-normalized
eigenfunctions of k, we can construct the unitary operators that transform from the position
into the wave-number representation. These operators will be denoted by F±. We shall also
rewrite the Lippmann–Schwinger bras and kets, along with the basis expansions induced by
them, in terms of k.

We first define the wave-number representation, f̂ (k), of any function f̂ (E) in
L2([0,∞), dE) by

f̂ (k) :=
√

h̄2

2m
2kf̂ (E). (2.8)

Because f̂ (E) belongs to L2([0,∞), dE), the function f̂ (k) belongs to L2([0,∞), dk). The
expressions for F± and F−1

± as integral operators can be easily obtained from the expressions
for the operators U± and U−1

± of [1] with help from equations (2.1), (2.6) and (2.8):

f̂ ±(k) = (F±f )(k) =
∫ ∞

0
dr f (r)χ±(r; k), (2.9a)

f (r) = (
F−1

± f̂ ±
)
(r) =

∫ ∞

0
dk f̂ ±(k)χ±(r; k). (2.9b)

By construction, F± are unitary operators from L2([0,∞), dr) onto L2([0,∞), dk):

F± : L2([0,∞), dr) �−→ L2([0,∞), dk)

f (r) �−→ f̂ ±(k) = (F±f )(k).
(2.10)

The notation F± intends to stress that F± are Fourier-like transforms.
In terms of k, the Lippmann–Schwinger bras and kets become

〈±k| =
√

h̄2

2m
2k〈±E|, k > 0, (2.11a)

|k±〉 =
√

h̄2

2m
2k|E±〉, k > 0; (2.11b)

that is,

〈±k|ϕ±〉 =
∫ ∞

0
dr〈±k|r〉〈r|ϕ±〉, k > 0, ϕ± ∈ Φ, (2.12a)

〈ϕ±|k±〉 =
∫ ∞

0
dr〈ϕ±|r〉〈r|k±〉, k > 0, ϕ± ∈ Φ, (2.12b)

where Φ ≡ S(R+-{a, b}) is the Schwartz-like space built in [1] and

〈r|k±〉 = χ±(r; k), k > 0, (2.13a)

〈±k|r〉 = χ±(r; k) = χ∓(r; k), k > 0. (2.13b)

Using the corresponding formal identity for the bras and kets in terms of E, one can
express the identity operator as

1 =
∫ ∞

0
dk|k±〉〈±k|, (2.14)
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that is,

〈r|ϕ±〉 =
∫ ∞

0
dk〈r|k±〉〈±k|ϕ±〉, k > 0, ϕ± ∈ Φ. (2.15)

One can also express the S-matrix element as

(ϕ−, ϕ+) =
∫ ∞

0
dk〈ϕ−|k−〉S(k)〈+k|ϕ+〉, ϕ± ∈ Φ, (2.16)

where

S(k) = J−(k)

J+(k)
. (2.17)

Since in the energy representation H acts as multiplication by E, in the wave-number
representation H acts as multiplication by h̄2

2m
k2:

(Ĥ f̂ )(k) = (
F±HF†

±f̂
)
(k) = h̄2

2m
k2f̂ (k). (2.18)

As well, the bras 〈±k| and kets |k±〉 are, respectively, left and right eigenvectors of H with
eigenvalue h̄2

2m
k2:

〈±k|H = h̄2

2m
k2〈±k|, (2.19)

H |k±〉 = h̄2

2m
k2|k±〉. (2.20)

2.3. The ‘free’ bras, kets and wavefunctions in terms of the (positive) wave number

The expressions for the eigenfunctions, bras and kets of the free Hamiltonian H0 can also be
rewritten in terms of k.

The ‘free’ eigenfunction that is δ-normalized as a function of k is given by

χ0(r; k) :=
√

h̄2

2m
2kχ0(r;E) =

√
2

π
sin(kr). (2.21)

By using equations (2.1), (2.8) and (2.21), together with the expression for the integral operator
U0 obtained in [13], one can construct the following integral operator and its inverse:

f̂ 0(k) = (F0f )(k) =
∫ ∞

0
dr f (r)χ0(r; k), (2.22a)

f (r) = (F−1
0 f̂ 0)(r) =

∫ ∞

0
dk f̂ 0(k)χ0(r; k). (2.22b)

The transform F0 is a unitary operator from L2([0,∞), dr) onto L2([0,∞), dk):

F0 : L2([0,∞), dr) �−→ L2([0,∞), dk)

f (r) �−→ f̂ 0(k) = (F0f )(k).
(2.23)
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In terms of k, the ‘free’ bras and kets become

〈k| =
√

h̄2

2m
2k〈E|, k > 0, (2.24a)

|k〉 =
√

h̄2

2m
2k|E〉, k > 0, (2.24b)

that is,

〈k|ϕ〉 =
∫ ∞

0
dr〈k|r〉〈r|ϕ〉, k > 0, (2.25a)

〈ϕ|k〉 =
∫ ∞

0
dr〈ϕ|r〉〈r|k〉, k > 0, (2.25b)

where

〈k|r〉 = χ0(r; k) = χ0(r; k), k > 0, (2.26a)

〈r|k〉 = χ0(r; k), k > 0, (2.26b)

and where ϕ denotes either ϕin or ψout.
Using the corresponding formal identity for the ‘free’ bras and kets in terms of E, one can

express the identity operator as

1 =
∫ ∞

0
dk|k〉〈k|; (2.27)

that is,

〈r|ϕ〉 =
∫ ∞

0
dk〈r|k〉〈k|ϕ〉, k > 0. (2.28)

In the wave-number representation H0 acts as multiplication by h̄2

2m
k2:

(Ĥ 0f̂ )(k) = (
F0H0F†

0 f̂ 0
)
(k) = h̄2

2m
k2f̂ 0(k). (2.29)

As well, the bras 〈k| and kets |k〉 are, respectively, left and right eigenvectors of H0 with
eigenvalue h̄2

2m
k2:

〈k|H0 = h̄2

2m
k2〈k|, (2.30)

H0|k〉 = h̄2

2m
k2|k〉. (2.31)

Finally, the Møller operators �± can be expressed in terms of the operators F± and F0 as

�± = F†
±F0, (2.32)

and they connect the ‘free’ with the ‘in’ and ‘out’ kets by

�±|k〉 = |k±〉, k > 0. (2.33)
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Figure 1. The boundary values of the Lippmann–Schwinger and of the ‘free’ bras and kets.

3. The analytic continuation of the Lippmann–Schwinger eigenfunctions

Equations (2.2)–(2.33), in particular the expressions for the Lippmann–Schwinger
eigenfunctions, were obtained in [1] by means of the Sturm–Liouville theory and are valid
when E and k are positive1. We are now going to perform the (radial) analytic continuation
of the Lippmann–Schwinger eigenfunctions into the complex plane. Equation (2.1) provides
the Riemann surface for such analytic continuation.

The analytic continuation of χ±(r;E) is obtained in two steps. First, one specifies the
boundary values of the Lippmann–Schwinger eigenfunctions on the upper rim of the cut. And
second, one continues those boundary values into the whole two-sheeted Riemann surface,
see figure 1. The boundary values of the Lippmann–Schwinger eigenfunctions on the upper
rim are given by equation (2.4).

Because χ±(r;E) depend explicitly on k rather than on E, the analytic continuation
of the Lippmann–Schwinger eigenfunctions is more easily obtained in terms of k, i.e., in
terms of the eigenfunctions χ±(r; k). The E-continuation described above translates into a k-
continuation as follows. First, one specifies the boundary values that the Lippmann–Schwinger
eigenfunctions take on the positive k-axis. And second, one continues those boundary values
into the whole k-plane. Since the boundary values of the Lippmann–Schwinger eigenfunctions
on the positive k-axis are given by equation (2.6), and since χ±(r; k) are expressed in terms
of well-known analytic functions, the continuation of χ±(r; k) from the positive k-axis into
the whole wave-number plane is well defined.

Obviously, the analytic continuation of the ‘free’ eigenfunctions χ0(r; k) follows the same
procedure.

A word on notation. Whenever they become complex, we shall denote the energy E and the
wave number k by, respectively, z and q. Accordingly, the continuations of χ±(r;E), χ0(r;E)

and χ±(r; k), χ0(r; k) will be denoted by χ±(r; z), χ0(r; z) and χ±(r; q), χ0(r; q). In bra-ket
notation, the analytically continued eigenfunctions will be written as

〈r|q±〉 = χ±(r; q), (3.1)

〈±q|r〉 = χ∓(r; q), (3.2)

〈r|q〉 = χ0(r; q), (3.3)

1 It is somewhat remarkable that the Sturm–Liouville theory actually uses complex energies, although it utilizes with
a particular branch of the square root function instead of a Riemann surface.
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〈q|r〉 = χ0(r; q). (3.4)

In appendix A, we list several useful relations satisfied by these analytically continued
eigenfunctions.

In doing analytic continuations, it is important to keep in mind that the combined
operations of analytic continuation and complex conjugation do not commute (and also differ
in whether the resulting function is analytic or not). The reason lies in the fact that if f (z) is an
analytic function, then f (z) is not an analytic function. This is why the analytic continuation
of f (E) must in general be written as f (z). For example, for real wave numbers it holds that

χ+(r; k) = χ−(r; k). (3.5)

When we analytically continue equation (3.5), we must write

χ+(r; q) = χ−(r; q), (3.6)

rather than

χ+(r; q) = χ−(r; q), (3.7)

since χ−(r; q) is not analytic. What is more, equation (3.7) is false.
We now turn to characterize the analytic and the growth properties of χ±(r; q). Such

properties will be needed in the next section. In order to characterize the analytic properties
of χ±(r; q), we define the following sets:

Z± = {q ∈ C | J±(q) = 0}. (3.8)

The set Z± contains the zeros of the Jost function J±(q). Because of equation (A.11), a wave
number q belongs to Z+ if, and only if, −q belongs to Z−. The elements of Z+ are simply
the discrete, denumerable poles of the S-matrix. Since χ(r; q) and J±(q) are analytic in the
whole k-plane [2, 14], χ±(r; q) is analytic in the whole k-plane except at Z±, where its poles
are located.

In order to characterize the growth of χ±(r; q), we first study the growth of χ(r; q). The
growth of χ(r; q) is bounded by the following estimate (see, for example, equation (12.6)
in [14]):

|χ(r; q)| � C
|q|r

1 + |q|r e|Im(q)|r , q ∈ C. (3.9)

From equations (2.6) and (3.9), it follows that the eigenfunctions χ±(r; q) satisfy

|χ±(r; q)| � C

|J±(q)|
|q|r

1 + |q|r e|Im(q)|r . (3.10)

When q ∈ Z±, the Lippmann–Schwinger eigenfunction χ±(r; q) blows up to infinity.
We can further refine the estimates (3.10) by characterizing the growth of 1/|J±(q)| in

different regions of the complex plane. The following proposition, which is based on well-
known results [2, 14], and whose proof can be found in appendix B, characterizes the growth
of 1/|J±(q)| in different regions of the k-plane for the spherical shell potential:

Proposition 1. The inverse of the Jost function J+(q) is bounded in the upper half of the
complex wave-number plane:

1

|J+(q)| � C, Im(q) � 0. (3.11)

In the lower half-plane, 1
J+(q)

is infinite whenever q ∈ Z+. As |q| tends to ∞ in the lower
half-plane, we have

1

J+(q)
≈ 1

1 − Cq−2 e2iqb
≡ 1

λ(q)
, (|q| → ∞, Im(q) < 0). (3.12)
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The above estimates are satisfied by J−(q) when we exchange the upper for the lower half-
plane, and Z+ for Z−:

1

|J−(q)| � C, Im(q) � 0. (3.13)

1

J−(q)
≈ 1

1 − Cq−2 e−2iqb
≡ 1

λ(−q)
, (|q| → ∞, Im(q) > 0). (3.14)

Equation (3.10) and proposition 1 imply, in particular, that the growth of the ‘out’
eigenfunction in the lower half-plane is limited by∣∣χ−(r; q)

∣∣ � C
|q|r

1 + |q|r e|Im(q)|r , Im(q) � 0. (3.15)

To finish this section, we recall that the ‘free’ eigenfunctions are analytic in the whole
complex plane and satisfy an estimate similar to that in equation (3.9), as shown by
equation (12.4) in [14]:

|χ0(r; q)| = |
√

2/π sin(qr)| � C
|q|r

1 + |q|r e|Im(q)|r , q ∈ C. (3.16)

4. The analytic continuation of the Lippmann–Schwinger bras and kets

The analytic continuation of the Lippmann–Schwinger bras (2.12a) is defined for any complex
wave number q in the distributional way:

〈±q| : Φexp �−→ C

ϕ± �−→ 〈±q|ϕ±〉 =
∫ ∞

0
dr ϕ±(r)χ∓(r; q),

(4.1)

where the functions ϕ±(r) belong to a space of test functions Φexp that will be constructed in
the next section. In the bra-ket notation, equation (4.1) can be recast as

〈±q|ϕ±〉 =
∫ ∞

0
dr〈±q|r〉〈r|ϕ±〉. (4.2)

Obviously, when the complex wave number q tends to the real, positive wave number k, the
bras 〈±q| tend to the bras 〈±k|.

Similarly to the bras (2.12a), the analytic continuation of the Lippmann–Schwinger kets
(2.12b) is defined as

|q±〉 : Φexp �−→ C

ϕ± �−→ 〈ϕ±|q±〉 =
∫ ∞

0
dr ϕ±(r)χ±(r; q),

(4.3)

which in bra-ket notation becomes

〈ϕ±|q±〉 =
∫ ∞

0
dr〈ϕ±|r〉〈r|q±〉. (4.4)

By construction, when q tends to k, the kets |q±〉 tend to the kets |k±〉.
The bras (4.1) and kets (4.3) are defined for all complex q except at those q at which the

corresponding eigenfunction has a pole. Hence, 〈−q| and |q+〉 are defined everywhere except
in Z+, whereas 〈+q| and |q−〉 are defined everywhere except in Z−. At those poles, one can
still define bras and kets if in definitions (4.1) and (4.3) one substitutes the eigenfunctions
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χ±(r; q) by their residues at the pole:

〈±q| : Φexp �−→ C

ϕ± �−→ 〈±q|ϕ±〉 =
∫ ∞

0
dr ϕ±(r)res[χ∓(r; q)], q ∈ Z∓,

(4.5)

|q±〉 : Φexp �−→ C

ϕ± �−→ 〈ϕ±|q±〉 =
∫ ∞

0
dr ϕ±(r) res[χ±(r; q)], q ∈ Z±.

(4.6)

In this way, one can associate bras 〈±q| and kets |q±〉 with every complex wave number q.
The analytic continuation of the ‘free’ bras and kets (2.25a) and (2.25b) into any complex

wave number q is defined in the obvious way:

〈q|ϕ〉 =
∫ ∞

0
dr〈q|r〉〈r|ϕ〉

∫ ∞

0
dr ϕ(r)χ0(r; q), q ∈ C, (4.7)

〈ϕ|q〉 =
∫ ∞

0
dr〈ϕ|r〉〈r|q〉 =

∫ ∞

0
drϕ(r)χ0(r; q), q ∈ C, (4.8)

where ϕ denotes any asymptotically free wavefunction. Likewise definitions (4.1) and (4.3),
definitions (4.7) and (4.8) make sense when ϕ belongs to Φexp.

From the analytic continuation of the bras and kets into any complex wave number, one
can now obtain the analytic continuation of the bras and kets into any complex energy of the
Riemann surface:

|z±〉 =
√

2m

h̄2

1

2q
|q±〉, 〈±z| =

√
2m

h̄2

1

2q
〈±q|,

|z〉 =
√

2m

h̄2

1

2q
|q〉, 〈z| =

√
2m

h̄2

1

2q
〈q|.

(4.9)

5. Construction of the rigged Hilbert space for the analytic continuation of the
Lippmann–Schwinger bras and kets

Likewise the bras and kets associated with real energies, the analytic continuation of the
Lippmann–Schwinger bras and kets must be described within the rigged Hilbert space rather
than just within the Hilbert space. We shall denote the rigged Hilbert space for the analytically
continued bras by

Φexp ⊂ L2([0,∞), dr) ⊂ Φ′
exp, (5.1)

and the one for the analytically continued kets by

Φexp ⊂ L2([0,∞), dr) ⊂ Φ×
exp. (5.2)

In principle, we should construct the space of test functions separately for the ‘in’ and for
the ‘out’ wavefunctions. But since they turn out to be the same, we present the construction
for both cases at once.

The functions ϕ± ∈ Φexp must satisfy the following conditions:

• They belong to the maximal invariant subspace D of H,

D = ⋂∞
n=0 D(Hn).

(5.3a)

• They are such that definitions (4.1) and (4.3) make sense. (5.3b)
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The reason why ϕ± must satisfy condition (5.3a) is that such condition guarantees that all the
powers of the Hamiltonian are well defined. Condition (5.3a), however, is not sufficient to
obtain well-defined bras and kets associated with complex wave numbers. In order for 〈±q|
and |q±〉 to be well defined, the wavefunctions ϕ±(r) must be well behaved so the integrals
in equations (4.1) and (4.3) converge. How well ϕ±(r) must behave is determined by how
bad χ±(r; q) behave. Since by equation (3.10) χ±(r; q) grow exponentially with r, the
wavefunctions ϕ±(r) have to, essentially, tame real exponentials. If we define

‖ϕ±‖n,n′ :=
√∫ ∞

0
dr

∣∣∣ nr

1 + nr
enr2/2(1 + H)n

′
ϕ±(r)

∣∣∣2
, n, n′ = 0, 1, 2, . . . , (5.4)

then the space Φexp is given by

Φexp = {ϕ± ∈ D | ‖ϕ±‖n,n′ < ∞, n, n′ = 0, 1, 2, . . .}. (5.5)

This is just the space of square integrable functions which belong to the maximal invariant
subspace of H and for which the quantities (5.4) are finite. In particular, because ϕ±(r) satisfy
the estimates (5.4), ϕ±(r) fall off at infinity faster than e−r2

, that is, their tails fall off faster
than Gaussians.

From equation (3.10), it is clear that the integrals in equations (4.1) and (4.3) converge
already for functions that fall off at infinity faster than any exponential. We have imposed
Gaussian falloff because it allows us to perform expansions in terms of the Gamow states, as
will be discussed elsewhere.

It is illuminating to compare the space of test functions needed to accommodate the
Lippmann–Schwinger bras and kets associated with real wave numbers, the space Φ of
[1], with the space of test functions needed to accommodate their analytic continuation, the
space Φexp of equation (5.5). Because for real wave numbers the Lippmann–Schwinger
eigenfunctions behave like purely imaginary exponentials, in this case we only need to impose
on the test functions a polynomial falloff, thereby obtaining a space of test functions very
similar to the Schwartz space. By contrast, for complex wave numbers the Lippmann–
Schwinger eigenfunctions blow up exponentially, and therefore we need to impose on the test
functions an exponential falloff that damps such an exponential blowup.

The quantities (5.4) are norms and they can be used to define a countably normed topology
(i.e., a meaning of sequence convergence) τΦexp on Φexp:

ϕ±
α

τΦexp−→
α→∞ ϕ± iff

∥∥ϕ±
α − ϕ±∥∥

n,n′ −→
α→∞ 0, n, n′ = 0, 1, 2, . . . . (5.6)

Once we have constructed the space Φexp, we can construct its dual Φ′
exp and antidual Φ×

exp
spaces as the spaces of, respectively, linear and antilinear continuous functionals over Φexp,
and therewith the rigged Hilbert spaces (5.1) and (5.2). The Lippmann–Schwinger bras and
kets are, respectively, linear and antilinear continuous functionals over Φexp, i.e., 〈±q| ∈ Φ′

exp

and |q±〉 ∈ Φ×
exp. As well, 〈±q| and |q±〉 are, respectively, ‘left’ and ‘right’ eigenvectors of H

with eigenvalue h̄2/(2m)q2.
The following proposition, whose proof can be found in appendix B, encapsulates the

results of this section:

Proposition 2. The triplets of spaces (5.1) and (5.2) are rigged Hilbert spaces and they satisfy
all the requirements to accommodate the analytic continuation of the Lippmann–Schwinger
bras and kets. More specifically,

(i) The ‖·‖n,n′ are norms.
(ii) The space Φexp is dense in L2([0,∞), dr).
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(iii) The space Φexp is invariant under the action of the Hamiltonian, and H is Φexp-continuous.
(iv) The kets |q±〉 are continuous, antilinear functionals over Φexp, i.e., |q±〉 ∈ Φ×

exp.

(v) The kets |q±〉 are ‘right’ eigenvectors of H with eigenvalue h̄2

2m
q2:

H |q±〉 = h̄2

2m
q2|q±〉; (5.7a)

that is,

〈ϕ±|H |q±〉 = h̄2

2m
q2〈ϕ±|H |q±〉, ϕ± ∈ Φexp. (5.7b)

(vi) The bras 〈±q| are continuous, linear functionals over Φexp, i.e., 〈±q| ∈ Φ′
exp.

(vii) The bras 〈±q| are ‘left’ eigenvectors of H with eigenvalue h̄2

2m
q2:

〈±q|H = h̄2

2m
q2〈±q|; (5.8a)

that is,

〈±q|H |ϕ±〉 = h̄2

2m
q2〈±q|ϕ±〉. (5.8b)

Equations (5.7a) and (5.8a) can be rewritten in terms of the complex energy z as

H |z±〉 = z|z±〉, (5.9)

〈±z|H = z〈±z|. (5.10)

Note that the bra eigenequation (5.10) is not given by 〈±z|H = z〈±z|, as one may naively
expect from formally obtaining (5.10) by Hermitian conjugation of the ket eigenequation (5.9).
The reason lies in that the function z is not analytic, so when one obtains the bra eigenequation
by Hermitian conjugation of the ket eigenequation, one has to use z = z. The following chain
of equalities further clarifies this point:

〈±z|H |ϕ±〉 = z〈±z|ϕ±〉 = z〈ϕ±|z±〉 = z〈ϕ±|z±〉 = 〈ϕ±|H |z±〉. (5.11)

The ‘free’ bras (4.7) and kets (4.8) can also be accommodated within the rigged Hilbert
spaces (5.1) and (5.2). To see this, one just has to recall the estimate (3.16). One can then
show, in complete analogy with the Lippmann–Schwinger bras and kets, that 〈q| belongs
to Φ′

exp and that |q〉 belongs to Φ×
exp. As well, one can easily prove that 〈q| and |q〉 are,

respectively, ‘left’ and ‘right’ eigenvectors of H0 with eigenvalue h̄2

2m
q2.

It is clear that there is a one-to-one correspondence between bras and kets also when
the energy and the wave number become complex. The following table summarizes such
correspondence:

wave number ←→ energy

bra 〈±q|, 〈q| ←→ 〈±z|, 〈z|
� � �

ket |q±〉, |q〉 ←→ |z±〉, |z〉

(5.12)

6. The wave-number representations of the rigged Hilbert spaces, bras and kets

We turn now to obtain and characterize the wave-number representations of the rigged Hilbert
spaces (5.1) and (5.2) as well as of the ‘in’ and ‘out’ wavefunctions, bras and kets. The
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wave-number representations are very useful, because sometimes they differentiate between
the ‘in’ and the ‘out’ boundary conditions in a more clear way than the position representation.

6.1. The wave-number representations of the rigged Hilbert spaces

The ‘in’ (+) and the ‘out’ (−) wave-number representations of Φexp are readily obtained by
means of the unitary operators F± of equation (2.10):

F±Φexp ≡ Φ̂±exp, (6.1)

which in turn yield the wave-number representations of the rigged Hilbert spaces (5.1)
and (5.2):

Φ̂±exp ⊂ L2([0,∞), dk) ⊂ Φ̂
′
±exp, (6.2a)

Φ̂±exp ⊂ L2([0,∞), dk) ⊂ Φ̂
×
±exp. (6.2b)

The functions ϕ̂±(q) in Φ̂±exp are obviously the analytic continuation of ϕ̂±(k) from the
positive k-axis into the whole k-plane. One can easily show that

ϕ̂±(q) = 〈±q|ϕ±〉, (6.3)

and that

ϕ̂±(q) = 〈ϕ±|q±〉. (6.4)

The poles of the Lippmann–Schwinger eigenfunctions are carried over into the analytic
continuation of the wavefunctions: the function ϕ̂±(q) is analytic everywhere except at Z∓,
where its poles are located, and ϕ̂±(q) is analytic everywhere except at Z±, where its poles
are located.

That ϕ̂±(k) can be analytically continued into ϕ̂±(q) is made possible by the falloff of
ϕ±(r) at infinity. The falloff of ϕ±(r) also limits the growth of ϕ̂±(q). Such growth is
provided by the following proposition:

Proposition 3. In the lower half of the k-plane, ϕ̂+(q) grows slower than e|Im(q)|2 . More
precisely, for every positive integer n′, and for each α > 0, the following estimate holds:∣∣∣∣∣

(
1 +

h̄2

2m
q2

)n′

ϕ̂+(q)

∣∣∣∣∣ � C e
|Im(q)|2

2α , Im(q) � 0, (6.5)

where the constant C depends on n′, ϕ+ and α, but not on q. In the upper half-plane, ϕ̂+(q) is
infinity whenever q ∈ Z−. As |q| tends to ∞ in the upper half-plane, it holds that∣∣∣∣∣
(

1 +
h̄2

2m
q2

)n′

ϕ̂+(q)

∣∣∣∣∣ � C
1

|λ(−q)| e
|Im(q)|2

2α , (|q| → ∞, Im(q) > 0), (6.6)

where λ(−q) is given by proposition 1.
The above estimates are satisfied by ϕ̂−(q) when we exchange the upper for the lower

half-plane:∣∣∣∣∣
(

1 +
h̄2

2m
q2

)n′

ϕ̂−(q)

∣∣∣∣∣ � C e
|Im(q)|2

2α , Im(q) � 0. (6.7)

∣∣∣∣∣
(

1 +
h̄2

2m
q2

)n′

ϕ̂−(q)

∣∣∣∣∣ � C
1

|λ(q)| e
|Im(q)|2

2α , (|q| → ∞, Im(q) < 0), (6.8)
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The proof of proposition 3 can be found in appendix B and it is based on the theory of M
and � functions, see [12] and appendix C. For our purposes, the most important result is

xy � xn

n
+

yn′

n′ , (6.9)

where x, y � 0 and
1

n
+

1

n′ = 1. (6.10)

Equation (6.9) can be used to show that when ϕ±(r) falls off faster than e−rn

, then, away from
its poles, ϕ̂±(q) grows slower than e|Im(q)|n′

. In this paper, we use n = n′ = 2.
The bounds in proposition 3 are very wasteful when |q| → 0, where ϕ̂±(q) actually tends

to 0. This happened because in the proof of proposition 3, we dismiss the factor |q|r/(1+ |q|r).
Dismissing this factor should not be the cause of concern, since the most crucial behaviour of
ϕ̂±(q) occurs in the limit |q| → ∞.

It is interesting to compare the growth of our test functions with the growth of the test
functions used by Bollini et al [10, 11]. In [10, 11], ϕ(r) falls off like e−r , and therefore |̂ϕ(p)|
grows faster than any exponential of |Im(p)|n, where p denotes the complex momentum and n
can be any positive integer. In the present paper, ϕ(r) falls off like e−r2

, and therefore |̂ϕ±(q)|
grows like e|Im(q)|2 away from its poles.

It is also interesting to compare our approach with that based on Hardy functions [3–9].
From equation (2.8), one can obtain the analytic and growth properties of the wavefunctions
in the energy representation, ϕ̂±(z), from those of ϕ̂±(q). Since by proposition 3 the
wavefunctions ϕ̂±(q) blow up exponentially in the infinity arc of the wave-number plane,
the wavefunctions ϕ̂±(z) also blow up exponentially in the infinity arcs of the Riemann
surface. Therefore, ϕ̂±(z) are not Hardy functions, because if they were, they would tend to
zero in one of the infinite semi-arcs of the Riemann surface. Hence, our approach is different
from that based on Hardy functions.

6.2. The wave-number representation of the Lippmann–Schwinger bras and kets

The wave-number representation of the bras 〈±q| and kets |q±〉 is defined as

〈±q̂| ≡ 〈±q|F±, (6.11)

|̂q±〉 ≡ F±|q±〉. (6.12)

The bras 〈±q| and kets |q±〉 are obviously different from their wave-number
representations 〈±q̂| and |̂q±〉, and such difference can be better understood through a simpler
example. Consider the 1D momentum operator P = −ih̄d/dx. In the position representation,
the δ-normalized eigenfunctions of P are the exponentials 1√

2πh̄
eipx/h̄ and these are the

analogue of |q±〉. In the momentum representation, which is obtained by Fourier transforming
the position representation, the eigenfunctions of the momentum operator become the delta
function δ(p − p′) and these are the analogue of |̂q±〉.

When q does not belong to Z∓, the bras 〈±q̂| act as the linear complex delta functional,
as the following chain of equalities show:

〈±q̂ |̂ϕ±〉 = 〈±q|F±|̂ϕ±〉 by (6.11)

= 〈±
q
∣∣F†

±ϕ̂±〉
by (B.1)

= 〈±q|ϕ±〉
= ϕ̂±(q), q /∈ Z∓ by (6.3). (6.13)
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When q belongs to Z∓, the wavefunction ϕ̂±(q) has a pole at q, and therefore the bra 〈±q̂|
acts as the linear residue functional:

〈±q̂ |̂ϕ±〉 = res[̂ϕ±(q)], q ∈ Z∓. (6.14)

Similarly, when q does not belong to Z±, the kets |q±〉 act as the antilinear complex delta
functional, as the following chain of equalities show:

〈̂ϕ±|̂q±〉 = 〈̂ϕ±|F±|q±〉 by (6.12)

= 〈
F†

±ϕ̂±∣∣q±〉
by (B.2)

= 〈ϕ±|q±〉
= ϕ̂±(q), q /∈ Z± by (6.4). (6.15)

When q belongs to Z±, the wavefunction ϕ̂±(q) has a pole at q, and therefore the ket |q±〉 acts
as the antilinear residue functional:

〈̂ϕ±|̂q±〉 = res[̂ϕ±(q)], q ∈ Z±. (6.16)

The complex delta functional and the residue functional can be written in more familiar
terms as follows. By using the resolution of the identity (2.14), we can formally write the
action of 〈±q̂| as an integral operator and obtain

〈±q̂ |̂ϕ±〉 = 〈±q|ϕ±〉
=

∫ ∞

0
dk〈±q|k±〉〈±k|ϕ±〉

=
∫ ∞

0
dk〈±q|k±〉̂ϕ±(k). (6.17)

Comparison of (6.17) with (6.13) shows that when q /∈ Z∓, 〈±q|k±〉 coincides with the
complex delta function at q:

〈±q|k±〉 = δ(k − q), q /∈ Z∓. (6.18)

Note that when q is positive, equation (6.18) reduces to the standard δ-function normalization.
When q ∈ Z∓, comparison of (6.17) with (6.14) implies that 〈±q|k±〉 coincides with the
residue distribution at q:

〈±q|k±〉 = res[·]q, q ∈ Z∓. (6.19)

Similarly, by using (2.14) we can formally write the action of |̂q±〉 as an integral operator:

〈̂ϕ±|̂q±〉 = 〈ϕ±|q±〉
=

∫ ∞

0
dk〈ϕ±|k±〉〈±k|q±〉

=
∫ ∞

0
dk ϕ±(k)〈±k|q±〉. (6.20)

By comparing (6.20) with (6.15), we deduce that when q /∈ Z±, 〈±k|q±〉 coincides with the
complex delta function at q:

〈±k|q±〉 = δ(k − q), q /∈ Z±. (6.21)

When q ∈ Z±, comparison of (6.20) with (6.16) lead us to identify 〈±k|q±〉 as the residue
distribution at q:

〈±k|q±〉 = res[·]q, q ∈ Z±. (6.22)

It is important to note that, with a given test function, the complex delta function and
the residue distribution at q associate, respectively, the value and the residue of the analytic
continuation of the test function at q. This is why when those distributions act on ϕ̂±(k) as in
equation (6.20), the final result is, respectively, ϕ̂±(q) and res[̂ϕ±(q)], rather than ϕ̂±(q) and
res[̂ϕ±(q)], since the analytic continuation of ϕ̂±(k) is ϕ̂±(q) rather than ϕ̂±(q).
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6.3. The ‘free’ wave-number representation

One can also construct the wave-number representation associated with the ‘free’ Hamiltonian.
Since its construction follows the same steps as that of the ‘in’ and ‘out’ wave-number
representations, we shall simply list the main results.

The unitary operatorF0 in equation (2.23) provides the ‘free’ wave-number representation
of the space of test functions:

F0Φexp ≡ Φ̂0exp, (6.23)

which in turn yields the ‘free’ wave-number representation of the rigged Hilbert spaces (5.1)
and (5.2):

Φ̂0exp ⊂ L2([0,∞), dk) ⊂ Φ̂
′
0exp, (6.24a)

Φ̂0exp ⊂ L2([0,∞), dk) ⊂ Φ̂
×
0exp. (6.24b)

The functions ϕ̂(q) in Φ̂0exp are the analytic continuation of ϕ̂(k) from the positive k-axis
into the whole k-plane. One can easily show that

ϕ̂(q) = 〈q|ϕ〉, q ∈ C. (6.25)

and that

ϕ̂(q) = 〈ϕ|q〉, q ∈ C. (6.26)

The functions ϕ̂(q) are analytic in the whole k-plane and they satisfy the following estimate
for any α > 0 and for any positive integer n′:∣∣∣∣∣

(
1 +

h̄2

2m
q2

)n′

ϕ̂(q)

∣∣∣∣∣ � C e
|Im(q)|2

2α , q ∈ C, (6.27)

where the constant C depends on n′, ϕ and α, but not on q.
The ‘free’ wave-number representation of 〈q| and |q〉 is defined as

〈̂q| ≡ 〈q|F0, (6.28)

|̂q〉 ≡ F0|q〉. (6.29)

One can easily show that 〈̂q| and |̂q〉 are, respectively, the linear and antilinear complex delta
functionals.

7. The time evolution of the analytic continuation of the Lippmann–Schwinger
bras and kets

In [1], we obtained the time evolution of the ‘in’, as well as of the ‘out’, wavefunctions, bras
and kets. In terms of the wave number, the time evolution of the wavefunctions ϕ± is given by

ϕ±(r; t) = (e−iHt/h̄ϕ±)(r) =
∫ ∞

0
dk e−ik2h̄t/(2m)ϕ̂±(k)χ±(r; k), (7.1)

which is valid for −∞ < t < ∞. Equation (7.1) is equivalent to saying that the operator
e−iHt/h̄ acts, in the wave-number representation, as multiplication by e−ik2h̄t/(2m):

ϕ̂±(k; t) = (e−iĤ t/h̄ϕ̂±)(k) = e−ik2h̄t/(2m)ϕ̂±(k). (7.2)

For k positive, the time evolution of the Lippmann–Schwinger bras and kets is given by

〈±k|e−iHt/h̄ = eik2h̄t/(2m)〈±k|, (7.3)
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e−iHt/h̄|k±〉 = e−ik2h̄t/(2m)|k±〉. (7.4)

In this section, we analytically continue the above equations into the k-plane, thereby
obtaining the time evolution of the analytic continuation of the ‘in’, as well as of the ‘out’,
wavefunctions, bras and kets. As we shall see, such continuation entails the imposition of a
time asymmetric boundary condition upon the time evolution.

7.1. The analytic continuation of the time evolution

The analytic continuation of equation (7.2) is given by

ϕ̂±(q; t) = (e−iĤ t/h̄ϕ̂±)(q) = e−iq2h̄t/(2m)ϕ̂±(q). (7.5)

The factor e−iq2h̄t/(2m) does not change the analytic properties of ϕ̂±(q). It does, however,
change the growth properties of ϕ̂±(q) depending on the sign of t and on the quadrant of the
complex plane. As can be easily seen,

e−iq2h̄t/(2m) −→
|q|→∞

0,

t > 0, q ∈ 2nd, 4th,

or
t < 0, q ∈ 1st, 3rd,

(7.6)

e−iq2h̄t/(2m) −→
|q|→∞

∞,

t < 0, q ∈ 2nd, 4th,

or
t > 0, q ∈ 1st, 3rd,

(7.7)

where 1st, 2nd, 3rd and 4th denote, respectively, the first, second, third and fourth quadrants
of the k-plane. Thus, even though ϕ̂±(q) blows up exponentially for large q, ϕ̂±(q; t) goes to
zero in the infinite arc of the second and fourth quadrants when t > 0. In the infinite arc of the
first and third quadrants, ϕ̂±(q; t) goes to zero when t < 0. Hence, the analytic continuation
of the time evolution changes the growth properties of the wavefunctions and introduces a
time asymmetry.

In practical situations, the importance of the limits (7.6) lies in the fact that they enable us
to continue certain contour integrals all the way to the infinite arc of a quadrant in such a way
that such infinite arc does not contribute to the integral. For example, if �η and �∗

η denote the
contours depicted in figure 2, then Cauchy’s theorem and the bound (6.5), together with the
limits (7.6), yield∫

�η

dq e−iq2h̄t/(2m)ϕ̂+(q) = 0, t > 0, (7.8a)∫
�∗

η

dq e−iq2h̄t/(2m)ϕ̂+(q) = 0, t < 0. (7.8b)

These two equations exemplify the different behaviour of ϕ̂+(q; t) in different quadrants of
the k-plane for opposite signs of time.

Our next objective is to analytically continue equation (7.1). In order to do so, we define
the contour γε as the radial path in the fourth quadrant that forms an angle −ε with the positive
k-axis, see figure 3(a). Then,

ϕ±(r; t) =
∫

γε

dq e−iq2h̄t/(2m)ϕ̂±(q)χ±(r; q). (7.9)

Because by (7.6) and (7.7) e−iq2h̄t/(2m) tends to zero in the infinite arc of the fourth quadrant
only for positive times, the time evolution (7.9) is defined only for t > 0. Thus, the
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Γ
η

k plane

η
Γ ∗

Figure 2. The contours �η and �∗
η . The straight lines in the third and fourth quadrants form an

angle η with the negative imaginary axis, η being infinitesimally small.

Γ
R

Γ  ∗

R

k plane

−R R

k plane

γ

(a)  (b)

 ε
γ∗
 ε

Figure 3. The contour γε is a radial path in the fourth quadrant that forms an angle −ε with the
positive k-axis. The contour �R consists of the segment [0, R] of the positive real line, the arc γR

and the segment γε,R of length R that forms an angle −ε with the positive k-axis. The contours
γ ∗

ε and �∗
R are the mirror images of γε and �R with respect to the imaginary axis. If necessary, γε

and γ ∗
ε may be bent to avoid resonances.

analytic continuation into the fourth quadrant converts the time evolution group e−iHt/h̄ into a
semigroup. We shall denote this semigroup by e−iHt/h̄

+ :

ϕ±(r; t) = (
e−iHt/h̄

+ ϕ±)
(r) =

∫
γε

dq e−iq2h̄t/(2m)ϕ̂±(q)χ±(r; q), t > 0. (7.10)

Similarly, because by (7.6) and (7.7) e−iq2h̄t/(2m) tends to zero in the infinite arc of the third
quadrant only for negative times, the analytic continuation of the time evolution into the
third quadrant converts e−iHt/h̄ into a semigroup valid for t < 0 only. We shall denote this
semigroup by e−iHt/h̄

− :

ϕ±(r; t) = (e−iHt/h̄
− ϕ±)(r) = −

∫
γ ∗

ε

dq e−iq2h̄t/(2m)ϕ̂±(q)χ±(r; q), t < 0, (7.11)
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where γ ∗
ε is the mirror image of γε with respect to the imaginary axis, see figure 3(a). In

equations (7.10) and (7.11), ε is small enough so that γε and γ ∗
ε do not pick up resonance

contributions. (If necessary to avoid resonances, the contours γε and γ ∗
ε may be bent.)

Note that the analogous analytic continuation into the first quadrant yields a semigroup
for t < 0, whereas the continuation into the second quadrant yields a semigroup for t > 0.
Note also the similarity of these analytic continuations with the ±iε prescriptions.

By comparing the semigroup evolution,

ϕ±(r; t) = e−iHt/h̄
+ ϕ±(r), t > 0 only, (7.12)

with the standard time evolution,

ϕ±(r; t) = e−iHt/h̄ϕ±(r), t ∈ R, (7.13)

we are able to conclude that the semigroup e−iHt/h̄
+ is actually a retarded propagator. Similarly,

the semigroup e−iHt/h̄
− is actually an advanced propagator.

The following proposition, whose proof can be found in appendix B, asserts the soundness
of the semigroups:

Proposition 4. The retarded propagator e−iHt/h̄
+ is well defined and coincides with e−iHt/h̄

when t > 0. When t < 0, e−iHt/h̄
+ is not defined.

The advanced propagator e−iHt/h̄
− is well defined and coincides with e−iHt/h̄ when t < 0.

When t > 0, e−iHt/h̄
− is not defined.

The proof of proposition 4 makes it clear that the semigroups e−iHt/h̄
± are the result of

imposing upon the group e−iHt/h̄ a time asymmetric boundary condition through an analytic
continuation.

Our last objective in this section is to obtain the time evolution of the analytically continued
bras and kets. Admittedly, we shall fall short of this last objective, because at present time we
only have formal results.

By definition (B.1), the time evolution of the bras should formally read as

〈±q|e−iHt/h̄|ϕ±〉 = 〈±q|eiHt/h̄ϕ±〉
= ϕ̂±(q;−t)

= eiq2h̄t/(2m)ϕ̂±(q)

= eiq2h̄t/(2m)〈±q|ϕ±〉. (7.14)

By definition (B.2), the time evolution of the kets should formally read as

〈ϕ±|e−iHt/h̄|q±〉 = 〈eiHt/h̄ϕ±|q±〉
= ϕ̂±(q;−t)

= eiq2h̄t/(2m)ϕ̂±(q)

= e−iq2h̄t/(2m)ϕ̂±(q)

= e−iq2h̄t/(2m)〈ϕ±|q±〉. (7.15)

Plugging the limits (7.6) and (7.7) into equations (7.14) and (7.15) should yield

e−iHt/h̄|q±〉 = e−iq2h̄t/(2m)|q±〉,
t > 0, q ∈ 2nd, 4th,

or
t < 0, q ∈ 1st, 3rd,

(7.16)

and

〈±q|e−iHt/h̄ = eiq2h̄t/(2m)〈±q|,
t < 0, q ∈ 2nd, 4th,

or
t > 0, q ∈ 1st, 3rd.

(7.17)
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The rigorous proof of equations (7.16) and (7.17) through equations (7.14) and (7.15) is still
lacking, because the invariance properties of Φexp under e−iHt/h̄ are still not known. Such
rigorous proof should involve a generalization of the Paley–Wiener theorem XII [15] and of
logarithmic-integral techniques [16, 17].

One may wonder what happens to the semigroup time evolution when we make a complex
wave number q tend to a real wave number k. Let us do so, e.g., for q in the fourth quadrant:

lim
q→k

e−iHt/h̄|q±〉 = lim
q→k

e−iq2h̄t/(2m)|q±〉 = e−ik2h̄t/(2m)|k±〉, t > 0. (7.18)

It is clear from this equation that the time evolution of |q±〉, which should be defined for t > 0
only, tends to the time evolution of |k±〉 for t > 0. Of course, for t < 0, the time evolution of
|k±〉 is also defined, even though one cannot obtain it from the above limit, since for negative
times the time evolution of |q±〉 should not be defined.

7.2. The ‘free’ propagators

The ‘free’ time evolution e−iH0t/h̄ can be analytically continued in much the same manner as
e−iHt/h̄, and such continuation also produces semigroups. The continuation of e−iH0t/h̄ into
the fourth quadrant yields the following ‘free’ retarded propagator:

ϕ(r; t) = (
e−iH0t/h̄

+ ϕ
)
(r) =

∫
γε

dq e−iq2h̄t/(2m)ϕ̂(q)χ0(r; q), t > 0, (7.19)

whereas the continuation into the third quadrant yields the following ‘free’ advanced
propagator:

ϕ(r; t) = (e−iH0t/h̄
− ϕ)(r) = −

∫
γ ∗

ε

dq e−iq2h̄t/(2m)ϕ̂(q)χ0(r; q), t < 0. (7.20)

The proof that the semigroups (7.19) and (7.20) are well defined follows the same steps as the
proof of proposition 4.

As well, the time evolution of the ‘free’ bras and kets should read as

e−iH0t/h̄|q〉 = e−iq2h̄t/(2m)|q〉,
t > 0, q ∈ 2nd, 4th,

or
t < 0, q ∈ 1st, 3rd,

(7.21)

and

〈q|e−iH0t/h̄ = eiq2h̄t/(2m)〈q|,
t < 0, q ∈ 2nd, 4th,

or
t > 0, q ∈ 1st, 3rd.

(7.22)

8. The ±iε and time asymmetry

The Lippmann–Schwinger equation

|E±〉 = |E〉 +
1

E − H ± iε
V |E〉 (8.1)

incorporates the infinitesimal imaginary parts ±iε. In practical calculations, ε is assumed to
be small and it is made zero at the end of the calculation. Mathematically, ±iε correspond to
approaching the physical spectrum (the ‘cut’) either from above (+) or from below (−).

It has been suggested [18] that ±iε should appear in the time evolution of the Lippmann–
Schwinger kets,

e−iHt/h̄|E±〉 = e−i(E±iε)t/h̄|E±〉, (8.2)
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which would result in a time asymmetric evolution for the Lippmann–Schwinger kets. Due
to ε �= 0 in (8.2), the time evolution of |E+〉 would be defined for t < 0 only and the time
evolution of |E−〉 would be defined for t > 0 only. Thus, the time evolution of the Lippmann–
Schwinger bras and kets associated with real energies would be already time asymmetric, even
though no analytic continuation has been done.

However, the semigroups (8.2) are in conflict with the results of [1] and with standard
scattering theory [2, 14], where the time evolution of the Lippmann–Schwinger bras and kets
is valid for −∞ < t < ∞.

To solve this conflict, we write the Lippmann–Schwinger equation as

|E±〉 = |E±〉inc + |E±〉scattering, (8.3)

where

|E±〉inc ≡ |E〉 (8.4)

represents the incident beam and

|E±〉scattering ≡ 1

E − H ± iε
V |E〉 (8.5)

represents the scattered beam. Clearly, even if we insisted on keeping ε finite to obtain a
semigroup time evolution, the incident beam (8.4) would still have a group time evolution,
because ε �= 0 affects only the scattered beam (8.5). Therefore, the semigroups (8.2) are not
associated with the Lippmann–Schwinger equation for real energies.

9. Conclusions

We have obtained and characterized the analytic continuation of the Lippmann–Schwinger
bras and kets. We have seen that the analytically continued Lippmann–Schwinger bras and
kets are distributions that act on the space of test functions Φexp. The elements of Φexp fall off
at infinity like e−r2

, and in the wave-number representation they grow like e|Im(q)|2 .
We have also constructed the wave-number representation of the analytically continued

bras and kets, 〈±q̂| and |̂q±〉. When their associated eigenfunction does not have a pole,
〈±q̂| and |̂q±〉 act, respectively, as the linear and antilinear complex delta functional. When
their associated eigenfunction has a pole, 〈±q̂| and |̂q±〉 act, respectively, as the linear and
antilinear residue functional. There is, in particular, a one-to-one correspondence between
bras and kets for any complex wave number q.

We have proved that the analytic continuation of the time evolution of the wavefunctions
entails the imposition of a time asymmetric boundary condition. The resulting time evolution
is given by a semigroup, which physically is simply a (retarded or advanced) propagator. These
semigroup propagators appear as the result of boundary conditions, rather than as the result of
an external bath. Also, we have argued, although not fully proved, that the time evolution of
the analytically continued Lippmann–Schwinger bras and kets is given by semigroups.

These results have important consequences in resonance theory, as will be shown
elsewhere.
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Appendix A. Useful formulae

Let us denote κ by Q when κ becomes complex:

Q ≡ Q(q) =
√

2m

h̄2 (z − V0) =
√

q2 − 2m

h̄2 V0. (A.1)

It is then easy to check that

Q(−q) = −Q(q), (A.2)

sin(−q) = −sin(q), cos(−q) = cos(q), (A.3)

J1(−q) = −J1(q), J2(−q) = −J2(q), (A.4)

J3(−q) = −J3(q), J4(−q) = −J4(q), (A.5)

J±(−q) = J±(q), (A.6)

χ(r;−q) = −χ(r; q), (A.7)

χ±(r;−q) = −χ±(r; q). (A.8)

It is also easy to check that

Q(−q) = −Q(q), (A.9)

J1(−q) = −J2(q), J3(−q) = −J4(q), (A.10)

J+(−q) = J−(q), (A.11)

χ(r;−q) = −χ(r; q), (A.12)

χ+(r;−q) = −χ−(r; q). (A.13)

It is as well easy to check that

Q(q) = Q(q), (A.14)

sin(q) = sin(q), cos(q) = cos(q), (A.15)

J1(q) = J2(q), J3(q) = J4(q), (A.16)

J+(q) = J−(q), (A.17)

χ(r; q) = χ(r; q), (A.18)

χ+(r; q) = χ−(r; q). (A.19)

Using the above relations, one can show that

〈r|q±〉 = χ±(r; q), (A.20)

〈±q|r〉 = χ∓(r; q) = χ±(r; q) = (−1)χ±(r;−q), (A.21)

〈r|q〉 = χ0(r; q), (A.22)

〈q|r〉 = χ0(r; q) = χ0(r; q) = (−1)χ0(r;−q), (A.23)

〈±q|r〉 = 〈r|q±〉 = (−1)〈r| − q±〉, (A.24)

〈q|r〉 = 〈r|q〉 = (−1)〈r| − q〉. (A.25)
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Appendix B. List of auxiliary propositions

Here, we list the proofs of the propositions we stated in the paper. In the proofs, whenever an
operator A is acting on the bras, we shall use the notation A′, and whenever it is acting on the
kets, we shall use the notation A×:

〈±q|A′|ϕ±〉 := 〈±q|A†ϕ±〉, ∀ϕ± ∈ Φexp, (B.1)

〈ϕ±|A×|q±〉 := 〈A†ϕ±|q±〉, ∀ϕ± ∈ Φexp. (B.2)

Thus, A′ denotes the dual extension of A acting to the left on the elements of Φ′
exp, whereas

A× denotes the antidual extension of A acting to the right on the elements of Φ×
exp. This

notation stresses that A is acting outside the Hilbert space and specifies towards what direction
the operator is acting, thereby making the proofs more transparent.

Proof of proposition 1. Equation (A.11) implies that any estimate satisfied by J+(q) in the
upper (lower) half-plane is automatically satisfied by J−(q) in the lower (upper) half-plane.
Thus, we only need to prove equations (3.11) and (3.12).

From, for example, equation (12.8) in [14], it follows that

|J+(q) − 1| � C

|q|
∫ ∞

0
dr|V (r)| |qr|

1 + |qr| e[|Im(q)|−Im(q)]r . (B.3)

Because Im(q) � 0 when q belongs to the upper half-plane C
+, because our potential vanishes

when r /∈ (a, b) and because |qr| < 1 + |qr|, equation (B.3) leads to

|J+(q) − 1| � C

|q|
∫ b

a

dr V0
|qr|

1 + |qr|
<

C

|q|V0

∫ b

a

dr

= C

|q|V0(b − a), q ∈ C
+, (B.4)

that is,

|J+(q) − 1| <
C

|q| , q ∈ C
+. (B.5)

This inequality implies that the Jost function J+(q) tends uniformly to 1 as the wave number
tends to infinity in the upper half-plane. This uniform convergence means that for any ε > 0,
there exists an Rε > 0 such that for all q ∈ C

+ satisfying |q| � Rε, |J+(q) − 1| < ε. Choose
ε = 1/4. Then, there exists an R4 > 0 so that for all q ∈ C

+ satisfying |q| � R4,J+(q) lies
within the disc of radius 1/4 centred at 1. This implies, in particular, that |J+(q)| > 1/2 when
|q| � R4. Hence,

1

|J+(q)| < 2, q ∈ C
+, |q| > R4. (B.6)

This inequality proves that 1/J+(q) is bounded in the upper half-plane except for the following
closed half-disc:

D := {q ∈ C
+ | |q| � R4}. (B.7)

Because the Jost function does not vanish in D for the potential we are considering (there is
no bound state), 1/J+(q) is an analytic function in D. By the maximum modulus principle,
this analytic function is bounded by some M > 0 when q ∈ D:

1

|J+(q)| � M, q ∈ D. (B.8)
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From equations (B.6) and (B.8), it follows that

1

|J+(q)| � max (M, 2), q ∈ C
+, (B.9)

which proves equation (3.11). Note that for potentials that bind bound states, inequality (B.9)
holds when |q| > |Kground|, where Kground is the wave number of the ground state.

Finally, the asymptotic behaviour (3.12) can be found in [2], equation (5.5.13). �

Proof of proposition 2.
(i) The proof of (i) is straightforward.
(ii) In order to prove (ii), we need to realize that the space Φexp satisfies

C∞
0 ([0,∞)/{0, a, b}) ⊂ Φexp ⊂ L2([0,∞), dr), (B.10)

where C∞
0 ([0,∞)/{0, a, b}) is the space of infinitely differentiable functions with compact

support in [0,∞) that vanish along with all their derivatives at r = 0, a, b. Because
C∞

0 ([0,∞)/{0, a, b}) is dense in L2([0,∞), dr) [19], the chain of inclusions (B.10) implies
that Φexp is dense in L2([0,∞), dr).
(iii) The proof of (iii) uses the following inequality:

‖Hϕ±‖n,n′ = ‖(H + 1)ϕ± − ϕ±‖n,n′

� ‖(H + 1)ϕ±‖n,n′ + ‖ϕ±‖n,n′

= ‖ϕ±‖n,n′+1 + ‖ϕ±‖n,n′ . (B.11)

This inequality implies that H is Φexp-continuous. There remains to prove that Φexp is stable
under the action of H. In order to prove so, we need to prove that Hϕ± belong to D and that
the norms ‖Hϕ±‖n,n′ are finite for n, n′ = 0, 1, . . . . That Hϕ± belong to D is trivial from
the definition of D. That the norms ‖Hϕ±‖n,n′ are finite follows from inequality (B.11). This
completes the proof of (iii).
(iv) The kets |q±〉 are well defined due to the properties satisfied by ϕ±. The kets |q±〉 are
antilinear functionals over the space Φexp by their own definition, equation (4.3). In order to
prove that the kets |q±〉 are continuous, we need the following inequality:

|〈ϕ±|q±〉| �
∫ ∞

0
dr|ϕ±(r)χ±(r; q)|

� C

|J±(q)|
∫ ∞

0
dr

∣∣∣∣ϕ±(r)
|q|r

1 + |q|r e|Im(q)|r
∣∣∣∣ , (B.12)

where we have used equation (3.10) in the second step. If we take the smallest positive integer
n such that |q| � n, then we have∣∣∣∣ |q|r

1 + |q|r e|q|r
∣∣∣∣ � nr

1 + nr
enr

= nr

1 + nr
e(n+1)r e−r

� (n + 1)r

1 + (n + 1)r
e(n+1)r e−r

� (n + 1)r

1 + (n + 1)r
e(n+1)r2/2 e−r+2n+2. (B.13)

Plugging this inequality into (B.12) yields

|〈ϕ±|q±〉| � C

|J±(q)|
∫ ∞

0
dr

∣∣∣∣ϕ±(r)
(n + 1)r

1 + (n + 1)r
e(n+1)r2/2

∣∣∣∣ e−r+2n+2
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� C e2n+2

|J±(q)|

(∫ ∞

0
dr

∣∣∣∣ϕ±(r)
(n + 1)r

1 + (n + 1)r
e(n+1)r2/2

∣∣∣∣2
)1/2 (∫ ∞

0
dre−2r

)1/2

= C e2n+2

|J±(q)| ‖ϕ
±‖n+1,0. (B.14)

This inequality proves that the functionals |q±〉 are Φexp-continuous except when q ∈ Z±.
When q ∈ Z±, one can obtain the same result by substituting χ±(r; q) by their residues at q.

We note in passing that the same arguments lead to the following inequality:∣∣∣∣∣
(

1 +
h̄2

2m
q2

)n′

〈ϕ±|q±〉
∣∣∣∣∣ � C e2n+2

|J±(q)| ‖ϕ
±‖n+1,n′ , n′ = 0, 1, . . . . (B.15)

(v) We prove (v) by integration by parts and by using the Gaussian falloff of the functions
ϕ±(r) at infinity and the fact that they vanish at the origin:

〈ϕ±|H×|q±〉 = 〈Hϕ±|q±〉
=

∫ ∞

0
dr

(
− h̄2

2m

d2

dr2
+ V (r)

)
ϕ±(r)χ±(r; q)

= − h̄2

2m

[
dϕ±(r)

dr
χ±(r; q)

]∞

0

+
h̄2

2m

[
ϕ±(r)

dχ±(r; q)

dr

]∞

0

+
∫ ∞

0
drϕ±(r)

(
− h̄2

2m

d2

dr2
+ V (r)

)
χ±(r; q)

=
∫ ∞

0
dr ϕ±(r)

(
− h̄2

2m

d2

dr2
+ V (r)

)
χ±(r; q)

= h̄2

2m
q2

∫ ∞

0
dr ϕ±(r)χ±(r; q)

= h̄2

2m
q2〈ϕ±|q±〉. (B.16)

(vi) That the bras are continuous can be shown through the following inequality:

|〈±q|ϕ±〉| � C e2n+2

|J∓(q)| ‖ϕ
±‖n+1,0, (B.17)

where n is the smallest positive integer such that |q| � n. The proof of (B.17) is almost
identical to the proof of (B.14).
(vii) Equation (5.8b) can be proved in an almost identical manner to equation (5.7b). �

Proof of proposition 3. The proofs of equations (6.5)–(6.8) all follow the same pattern, and
hence we shall only need to prove equation (6.5).

When Im(q) � 0, we have that∣∣∣∣∣
(

1 +
h̄2

2m
q2

)n′

ϕ̂+(q)

∣∣∣∣∣ =
∣∣∣∣∫ ∞

0
dr χ−(r; q)(1 + H)n

′
ϕ+(r)

∣∣∣∣ by (2.18)

�
∫ ∞

0
dr|χ−(r; q)(1 + H)n

′
ϕ+(r)|

� C

∫ ∞

0
dr|e|Im(q)|r (1 + H)n

′
ϕ+(r)| by (3.15)
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� C

∫ ∞

0
dr

∣∣e|Im(q)|2/(2α) eαr2/2(1 + H)n
′
ϕ+(r)

∣∣ by (C.7)

= C e|Im(q)|2/(2α)

∫ ∞

0
dr

∣∣e−αr2/2 eαr2
(1 + H)n

′
ϕ+(r)

∣∣
� C e|Im(q)|2/(2α)

(∫ ∞

0
dr

∣∣e−αr2/2
∣∣2

)1/2

×
(∫ ∞

0
dr

∣∣eαr2
(1 + H)n

′
ϕ+(r)

∣∣2
)1/2

= C e|Im(q)|2/(2α)

(∫ ∞

0
dr

∣∣eαr2
(1 + H)n

′
ϕ+(r)

∣∣2
)1/2

. (B.18)

There only remains to prove that the last integral is finite. In order to prove so, we split that
integral into two:∫ ∞

0
dr

∣∣eαr2
(1 + H)n

′
ϕ+(r)

∣∣2 =
∫ 1

0
dr

∣∣eαr2
(1 + H)n

′
ϕ+(r)

∣∣2

+
∫ ∞

1
dr

∣∣eαr2
(1 + H)n

′
ϕ+(r)

∣∣2

≡ I1 + I2. (B.19)

Now, on the one hand,

I1 =
∫ 1

0
dr

∣∣eαr2
(1 + H)n

′
ϕ+(r)

∣∣2

� eα

∫ 1

0
dr|(1 + H)n

′
ϕ+(r)|2

� eα

∫ ∞

0
dr|(1 + H)n

′
ϕ+(r)|2

= eα‖(1 + H)n
′
ϕ+‖2, (B.20)

which is finite, since ϕ+ belongs, in particular, to the maximal invariant subspace of H, see
equation (5.3a). On the other hand, if we take n as the smallest positive integer that is larger
than 2 and 2α, then

I2 =
∫ ∞

1
dr

∣∣eαr2
(1 + H)n

′
ϕ+(r)

∣∣2

� 9

4

∫ ∞

1
dr

∣∣ 2r

1 + 2r
eαr2

(1 + H)n
′
ϕ+(r)

∣∣2

� 9

4

∫ ∞

1
dr

∣∣ nr

1 + nr
enr2/2(1 + H)n

′
ϕ+(r)

∣∣2

� 9

4

∫ ∞

0
dr

∣∣ nr

1 + nr
enr2/2(1 + H)n

′
ϕ+(r)

∣∣2

= 9

4
‖ϕ+‖2

n,n′ , (B.21)

where in the last step we have used definition (5.4). The combination of equations (B.18)–
(B.21) yields the estimate (6.5). �

Proof of proposition 4. The proof of (7.11) is very similar to the proof of (7.10), and therefore
we shall only prove the latter.
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We just need to prove that for ε > 0 and t > 0, it holds that

ϕ±(r; t) =
∫ ∞

0
dk e−ik2h̄t/(2m)ϕ̂±(k)χ±(r; k) =

∫
γε

dq e−iq2h̄t/(2m)ϕ̂±(q)χ±(r; q). (B.22)

Equation (B.22) can be easily proved after proving that the integrand on the right-hand
side tends to zero in the limit |q| → ∞ while the argument of q remains within 0 and ε. In
order to prove so, we write the complex wave number as q = |q| e−iθ , 0 � θ � ε, and use the
estimates of propositions 1 and 3 for large q:∣∣e−iq2h̄t/(2m)ϕ̂±(q)χ±(r; q)

∣∣ = e−|q|2 sin(2θ)h̄t/(2m) |̂ϕ±(q)χ±(r; q)|
� C e−|q|2 sin(2θ)h̄t/(2m) e

|q|2 sin2 θ

2α |χ±(r; q)|
� C e−|q|2 sin(2θ)h̄t/(2m) e

|q|2 sin2 θ

2α
|q|r

1 + |q|r e|q|r sin θ . (B.23)

As |q| tends to infinity, the exponential that carries the time dependence dominates if we
choose α > m/(2h̄t) tan ε. Thus, when t > 0 and 0 � θ � ε, equation (B.23) tends to zero
uniformly when the argument of q belongs to [0, ε]:∣∣e−iq2h̄t/(2m)ϕ̂±(q)χ±(r; q)

∣∣ uniformly−→
|q|→∞

0, θ ∈ [0, ε]. (B.24)

With help from this limit, it is very easy to prove equation (B.22). We first consider
the contour �R , which consists of the segment [0, R], the arc γR of radius R that sweeps in
between the angles 0 and ε and the segment γε,R of length R that links the origin with the
lower end of γR , see figure 3(b). Then, by Cauchy’s theorem, we have that∫

�R

dq e−iq2h̄t/(2m)ϕ̂±(q)χ±(r; q) = 0, (B.25)

because the integrand is analytic inside �R . Disassembling (B.25) yields∫
γε,R

dq e−iq2h̄t/(2m)ϕ̂±(q)χ±(r; q) −
∫ R

0
dk e−ik2h̄t/(2m)ϕ̂±(k)χ±(r; k)

−
∫

γR

dq e−iq2h̄t/(2m)ϕ̂±(q)χ±(r; q) = 0. (B.26)

Because of (B.24), the third integral in equation (B.26) vanishes as R tends to infinity. Thus,
taking the limit R → ∞ of equation (B.26) yields the sought result (B.22). �

Appendix C. M and Ω functions

In this appendix, we collect some results on M and � functions from chapter I of [12].
Let µ(ξ) (0 � ξ < ∞) denote an increasing continuous function, such that µ(0) = 0,

µ(∞) = ∞. We define for x � 0

M(x) =
∫ x

0
dξ µ(ξ). (C.1)

The function M(x) is an increasing convex continuous function, with M(0) = 0,M(∞) = ∞.
Let ω(η) (0 � η < ∞) denote an increasing continuous function, with ω(0) =

0, ω(∞) = ∞. For y � 0, we define

�(y) =
∫ y

0
dη ω(η). (C.2)

The function �(y) is an increasing convex continuous function, with �(0) = 0,�(∞) = ∞.
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We now introduce the important concept of functions which are dual in the sense of Young.
Let the functions M(x) and �(y) be defined by equations (C.1) and (C.2), respectively.
If the functions µ(ξ) and ω(η) which occur in these equations are mutually inverse, i.e.,
µ[ω(η)] = η, ω[µ(ξ)] = ξ , then the corresponding functions are said to be dual in the sense
of Young. In this case, the Young inequality

xy � M(x) + �(y) (C.3)

holds for any x, y � 0, see [12]. The Young inequality ‘disentangles’ the product xy into the
sum of a function that depends only on x and a function that depends only on y.

As an application of equation (C.3), one can prove that

xy � xa

a
+

yb

b
, (C.4)

where a and b are real numbers satisfying

1

a
+

1

b
= 1. (C.5)

When a = b = 2, we get

xy � x2

2
+

y2

2
, (C.6)

which yields the following inequality for any α > 0:

xy � α
x2

2
+

1

α

y2

2
. (C.7)
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